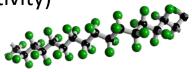


INDEX

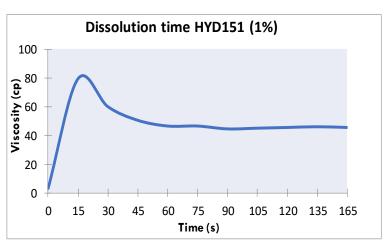
- **✓ HIMOLOC & HYDROSOL** Technologies
- ✓ Paper Mill Dosing Point Polymers
- **✓ Retention & Drainage** Polymers
- ✓ Dry & Wet Strength Polymers
- ✓ Fibers Recovery Polymers
- **✓ Ply Bond** Agent Polymers
- **✓ Wastewater Treatment** Polymers
- **✓** REGULATORY

HIMOLOC Description


- ✓ Polyacrylamides (PAM) in water dispersion form
- ✓ Free of solvents, oils and surfactants
- ✓ Appearance:
 - Pure Product: White milky liquid
 - Solution: Transparent
- ✓ **Ionicity:** Cationic, Anionic, Non Ionic and Amphoteric flocculants
- ✓ Structure:
 - Micro polymer 3D structure (charge is very accessible → Increase reactivity)
 - Linear and Cross-Linked polymers

Pure Product

Solution at 1%


HYDROSOL Description

- ✓ Polymer in polymer solution
- ✓ Appearance:
 - Pure Product: Whitish yellowish viscous liquid
 - Solution: Transparent

Pure Product Solution at 1%

- ✓ Composition: CPAM (AAM/ADAMQUAT or AAM/DADMAC) + pDADMAC
- ✓ Very Low Salt Content
- 'Two in One': contains coagulant/ATC (improves drainage) and flocculant (improves retention)
- √ Very EASY-TO-USE: Fast Dissolution (Static mixers)

HIMOLOC & HYDROSOL Technologies

Traditionally, high molecular weight acrylamide based polymers are found in oil emulsion or powder form. Himoloc and Hydrosol Technologies develop polymers in water based form.

Emulsions

- Contain surfactants and mineral oils
- VOC's emissions
- Expensive make-down equipment

Powders

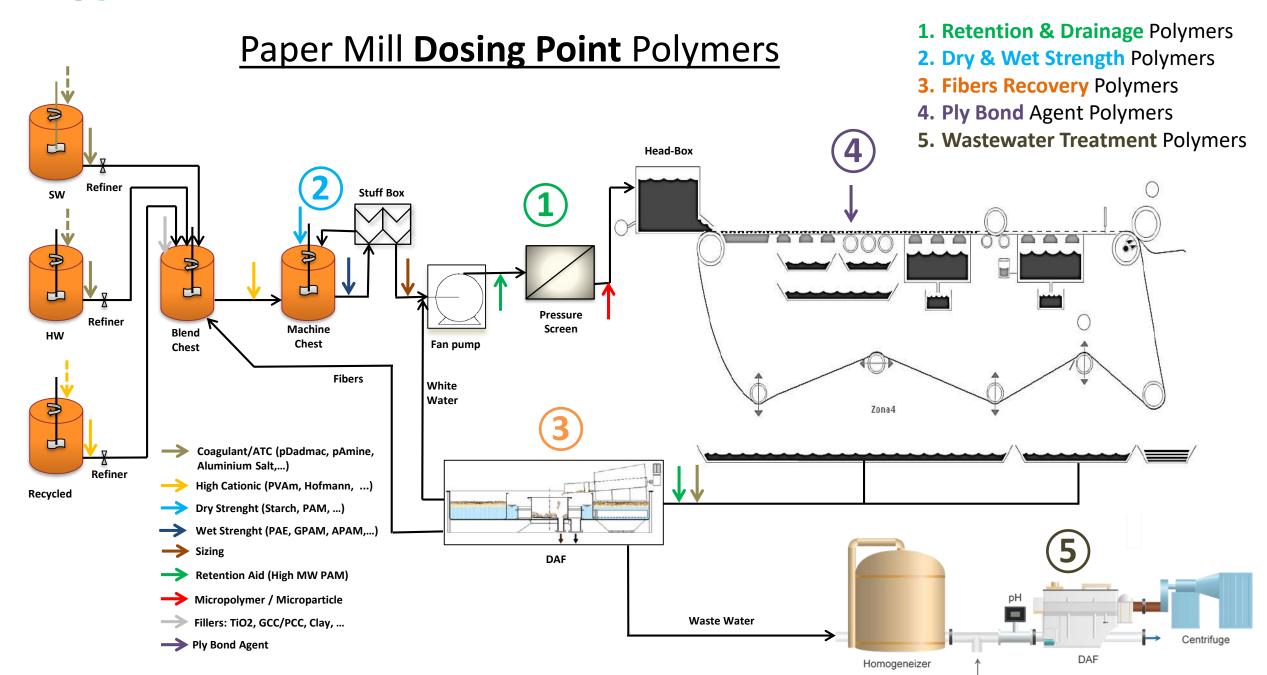
- Small dust particles that can contaminate the atmosphere and be explosive
- Very Expensive make-down equipment

HIMOLOC & HYDROSOL

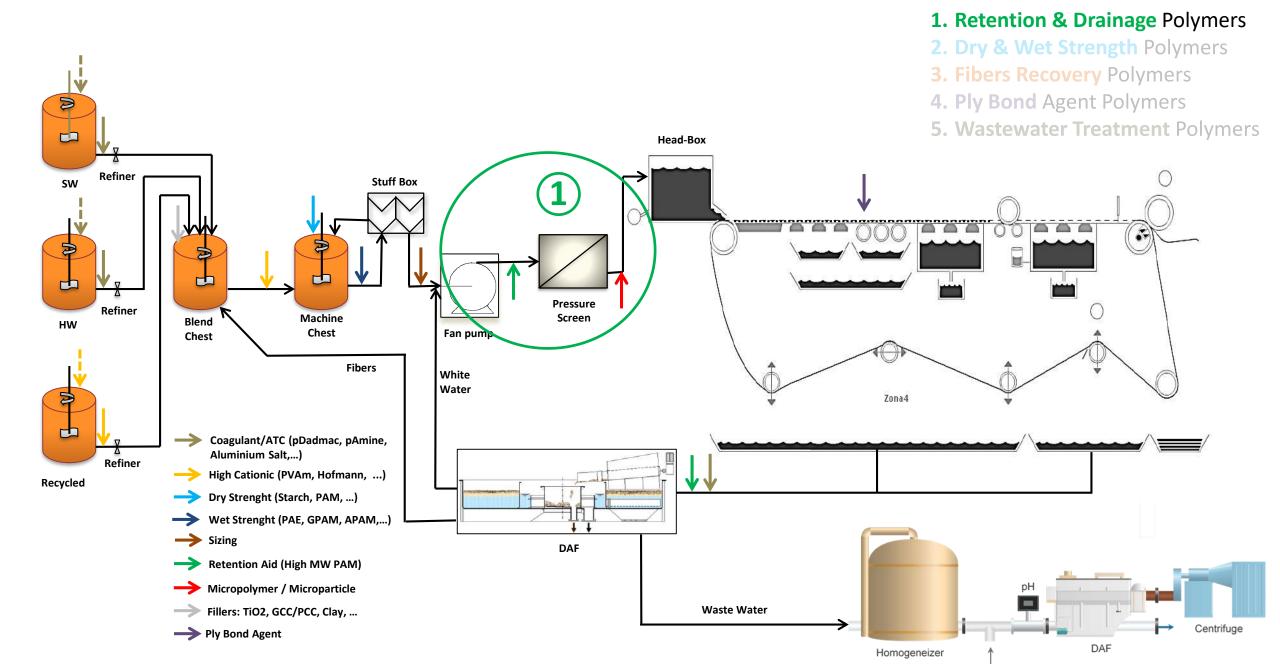
- Free of solvents, oils and surfactants
- NO VOC's emissions
- Easy make-down equipment

HIMOLOC & HYDROSOL are formulated with...

AAM: Acrylamide


NH₂

AAm C_3H_5NO 71.08 g/mol


As the **Backbone Monomer** for production of PAM's

...combined with other monomers to produce Cationic, Anionic, Non lonic or Amphoteric polymers

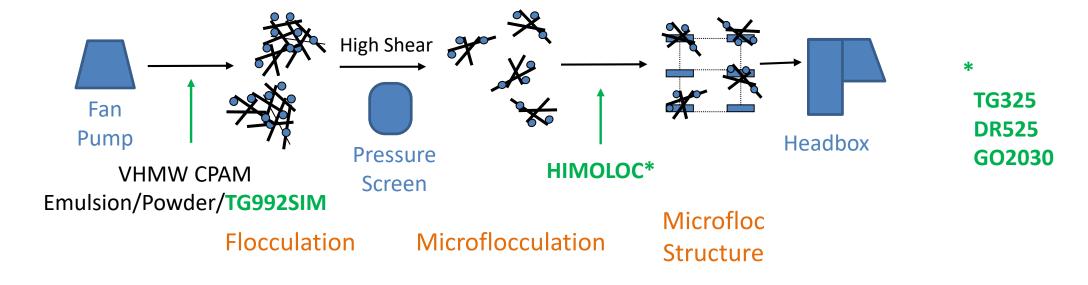
	CATIONIC I	ANIONIC M	10NOMERS		
DADMAC	MADAMQUAT	ADAMQUAT (MCQ)	BZQUAT (BZQ)	AA	AMPS
DADMAC C ₈ H ₁₆ CIN 161.67 g/mol	MADAM o MC75 C ₉ H ₁₈ CINO ₂ 207.7 g/mol	H ₂ C CH ₃ CH ₃ CI - CH ₃	O W CI BCQ C ₁₄ H ₂₀ CINO ₂ 269.77 g/mol	OH AAC C ₃ H ₄ O ₂ 72.06 g/mol	$\begin{array}{c c} O & & & & & \\ & N & & & & \\ & N & & & & \\ & & Na & & \\ & AMPS-Na & & \\ & C_7H_{12}NNaO_4S & & \\ & 229.23 \ g/mol & & \end{array}$
Neutralizes negatively charged colloidal material	Specially used to achieve very high molecular weights	Specially used to achieve very high molecular weights	exclusive monomer; high conductivity, hydrophobic nature	Acrylic acid, Anionic monomer to achieve very high molecular weights	High Hydrolisis Resistant and easy to disperse in water

Pulp&Paper Technologies

1 Retention & Drainage Polymers

Himoloc	Cationicity (%)	Composition	(UL)	Viscosity	Actives
DR2500	10%	AAM/BZQ	3.4	<400 cp	15%
DR525	10%	AAM/BZQ	3.6	<1500 cp	25%
TG325	10%	AAM/MCQ	4.3	<1500cp	20%
TG971	14%	AAM/MCQ	4.5	<1500 cp	20%
HB3522	15%	AAM/MCQ	3.7	<1500 cp	23%
TG22	20%	AAM/MCQ	3.2	<5000 cp	25%
TG992SIM	20%	AAM/MCQ	5.0	<2500 cp	20%

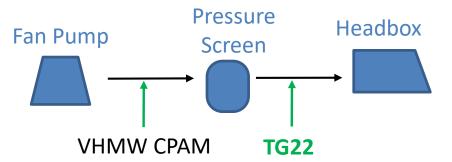
Himoloc	Anionicity (%)	Composition	(UL)	Viscosity	Actives
GO2000	NO IONIC	AAM	3.9	<2000 cp	20%
GO2010	10%	AAM/AAC	5.1	<3000 cp	25%
GO2030	30%	AAM/AAC	5.6	<2000 cp	25%


Hydrosol	Cationicity (%)	Composition	(UL)	Viscosity	Actives
HYD151	10%	AAM/MCQ	3,5	<12000 cp	30%
HYD252	38%	AAM/DADMAC	1,8	<12000 cp	30%

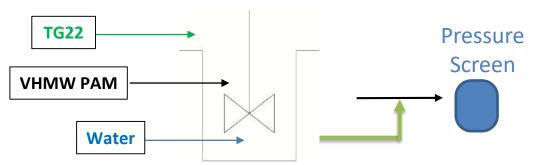
- ➤ **TG325**: Cationic Best-Selling Mycropolymer. Specially used in unbleached packaging grades
- ➤ **GO2030**: Anionic Best-Selling Mycropolymer. Specially used in printing and writing grades
- ➤ DR Series: Specially used in circuits with high conductivity (DR525 Best-Seller)
- > TG22 / HB3522: Hybrid Polymers
- > HYD151: Best-Selling Hydrosol. Improves Drainage
- ➤ New **TG992SIM**: New SIM Technology. Special designed for improving Drainage
- ➤ New **GO2000**: Non Ioinic PAM. Easy to dissolve

1 Retention & Drainage Programs with Himoloc & Hydrosol Polymers

Exclusive Programs


- 1. Simple Retention System: 1 Himoloc Polymer
 - ✓ Low conductivity → TG325 / TG992SIM
 - ✓ High conductivity (>3500 μ m/cm) → DR525
- 2. Dual Retetion Program: VHMW CPAM + Himoloc Polymer

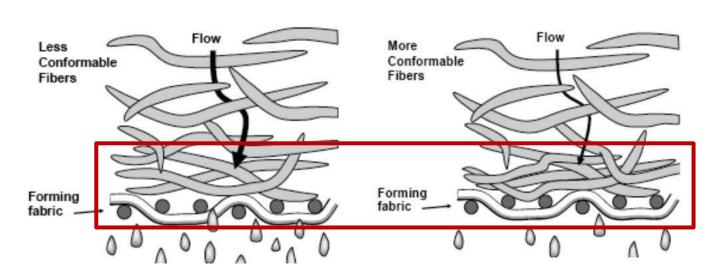
1 Retention & Drainage Programs with Himoloc & Hydrosol Polymers



- **3. Hybrid Programs**: VHMW CPAM + Himoloc Polymer
 - i. VHMW CPAM + Himoloc Hybrid Polymer (TG22) → As Dual Retention Program

ii. One Way Tank: VHMW Powder / Emulsion + Himoloc Hybrid Polymer (TG22) → Dissolved in the same tank and

dosed before Pressure Screen



- iii. One Way Product: Himoloc Hybrid Polymer (HB3522):
 - ✓ Combines VHMW Himoloc and TG22 in one product
 - ✓ Dosed before or after Pressure Screen depending on the System Conditions

1 Retention & Drainage Polymers with SIM Technology

Exclusive Technology

- ✓ TG992SIM is manufactured under SIM Technology (Spongeability Inducer Micronet)
- ✓ Drainage is related with the electrostatic floc volume and resistance, as can be easily understood in the Figure 1
- ✓ Figure 2 shows the maximum Spongeability level reached by **TG992SIM** compare with other similar PAM's

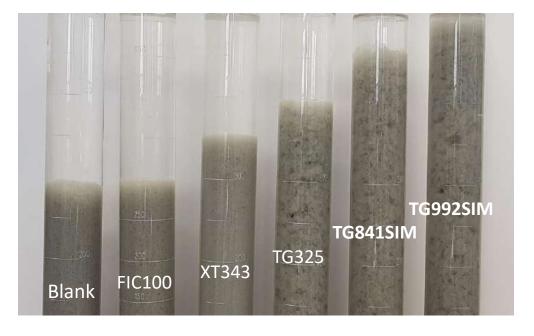
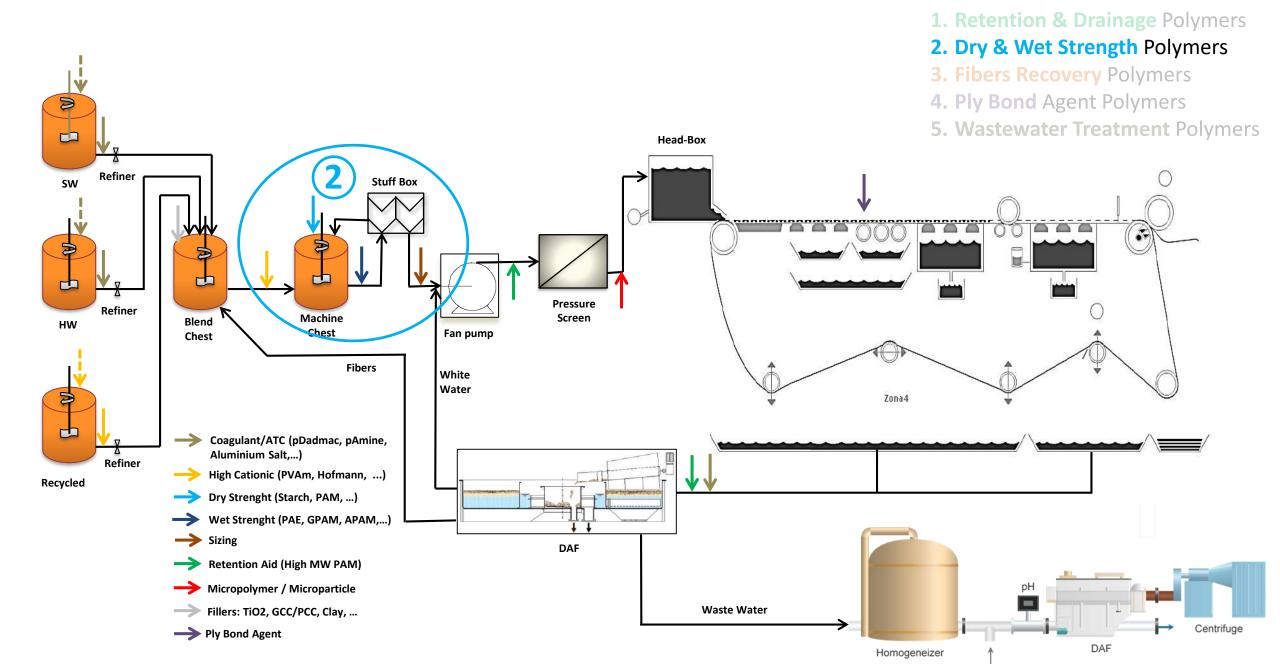
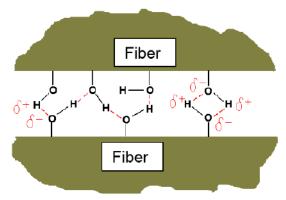


Figure 2 (300 g/Tn Actives)


HIMOLOC & HYDROSOL Technology Benefits:

- ✓ **GREEN** Polymers: Free of VOC's and Mineral Oils
- ✓ **EASY-TO-USE** → Static mixers
- ✓ Micropolymers (3D Structure) → charge is very accessible, increasing reactivity
- ✓ **Microflocculation** → Better Sheet formation
- ✓ Hydrosol: 'Two in One' → contains coagulant (ATC) and polymer (PAM)
- ✓ Exclusive Retention & Drainage Programs
- Exclusive SIM Technology
- ✓ Increases **Retention** of Fibers and Fillers an maximizes **Drainage** without compromising pressing efficiency
- ✓ Improves **Deposit Control** → Cleaner Circuits
- ✓ Improves Fines and Ash Distribution → better strength and optical properties

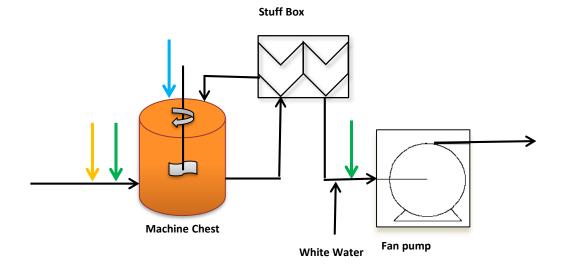

Pulp&Paper Technologies

2 Dry Strength Polymers

Product	Description	Ionicity	рН	Viscosity	Actives
RS15	PAM (Solution)	Amphoteric	2.0 - 4.0	2000 - 5000 cp	15%
RS19	PAM (Solution)	Amphoteric	3.0 - 5.0	5000 - 15000 cp	16%
RS21A	PAM (Solution)	Anionic	4.0 - 6.0	4000 - 8000 cp	25%

\checkmark	Improves Mechanical Properties and Sheet Formation
	by increasing strength of Chemical Bonds (Hydrogen-
	Hydrogen, Ionic and Covalent bonds)

HIMOLOC	Description	Ionicity	рН	Viscosity	Actives
ZW261	PAM (Dispersion)	VL Cat	4.0 - 6.0	<2000 cp	22%
GOX301	PAM (Dispersion)	Medium Anionic	3.0 - 5.0	<2000 cp	25%
GOX101	PAM (Dispersion)	Low Anionic	3.0 - 5.0	<2000 cp	25%

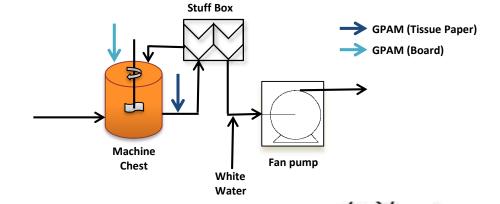

- ✓ Suitable for a wider range of pH and conductivity circuits
- ✓ Decreases wet-end starch consumption solving environmental problems (COD) and keeping cleaner circuits
- ✓ Easy-to-use Polymers → Pump & Go
- ✓ Himoloc Polymers → Higher Actives for Improving Performance/Cost
- ✓ GOX301 & GOX101: New & Exclusive DSA's

2 Dry Strength Programs

Exclusive Programs

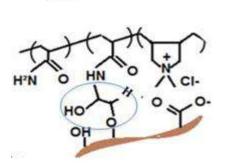
Simple Starch Programs:

- ✓ Low conductivity & Acid pH → Alum / Native or Cat Starch + PAM (ZW261 / RS15 / RS19)
- ✓ High conductivity & Neutral pH → Cat Starch + PAM (RS21A / GOX301 / GOX101)
- 2. Dual Program: Cationic Promoter (HYD151) + PAM (RS21A / GOX301 / GOX101 / ZW261)
- 3. Full Program: Native or Cat Starch + Anionic PAM (RS21A / GOX301 / GOX101) + Cationic Promoter (HYD151)

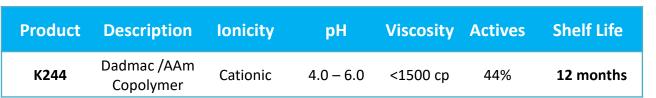

Recommended Dosage:

- PAM \rightarrow 1 4 Kg/Tn Actives
- Alum (Al⁺³ Salt) \rightarrow 2 5 Kg/Tn Solids
- Starch → 4 10 Kg/Tn Solids
- HYD151 \rightarrow 2 8 Kg/Tn as is
- ---> High Cationic Promoter (HYD151)
- Dry Strenght Polymer (Starch, PAM, ...)
- Alum (Al+3 Salt)

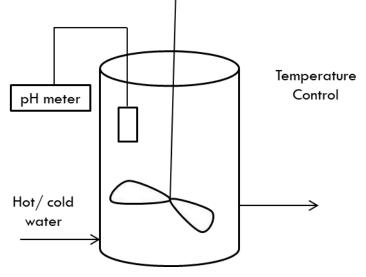
2 Dry & Wet Strength Polymer -> Cationic Glioxalated PolyAcrylamide (GPAM)


Product	Description	lonicity	рН	Viscosity	Actives	Shelf Life
ADG1	GPAM (Solution)	Cationic	2.0 - 3.0	<25cp	7%	< 1 month

■ Recommended Dosage: 1,0 – 2,5 Kg/Tn Actives (15 – 35 Kg/Tn as is)


GPAM Benefits:

- ✓ **Permanent Dry Strength** → The amino group reacts with the hydroxyl groups and carboxyl groups of cellulose forming **hydrogen bonds**
- ✓ Temporary Wet Strength → The aldehyde groups react with hydroxyl to form covalent and hemiacetalic bonds (transient formation of low grade cross linking)
- ✓ Suitable for 4<pH<7 and conductivity <3000 cp
- ✓ Specially used in Tissue Paper
- ✓ Possibility to Manufacture On Site (Paper Mill)

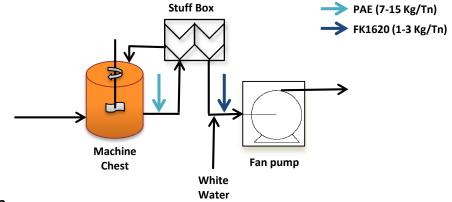


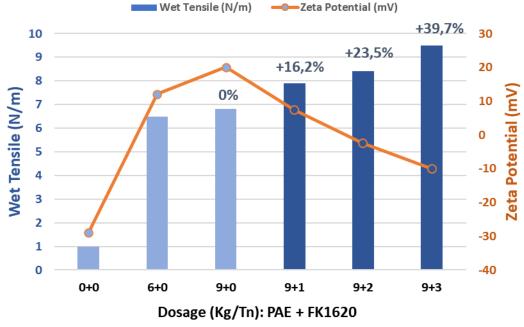
Non-commercially viable → **Technology Transfer**

2 Dry & Wet Strength GPAM → Technology Transfer from K244

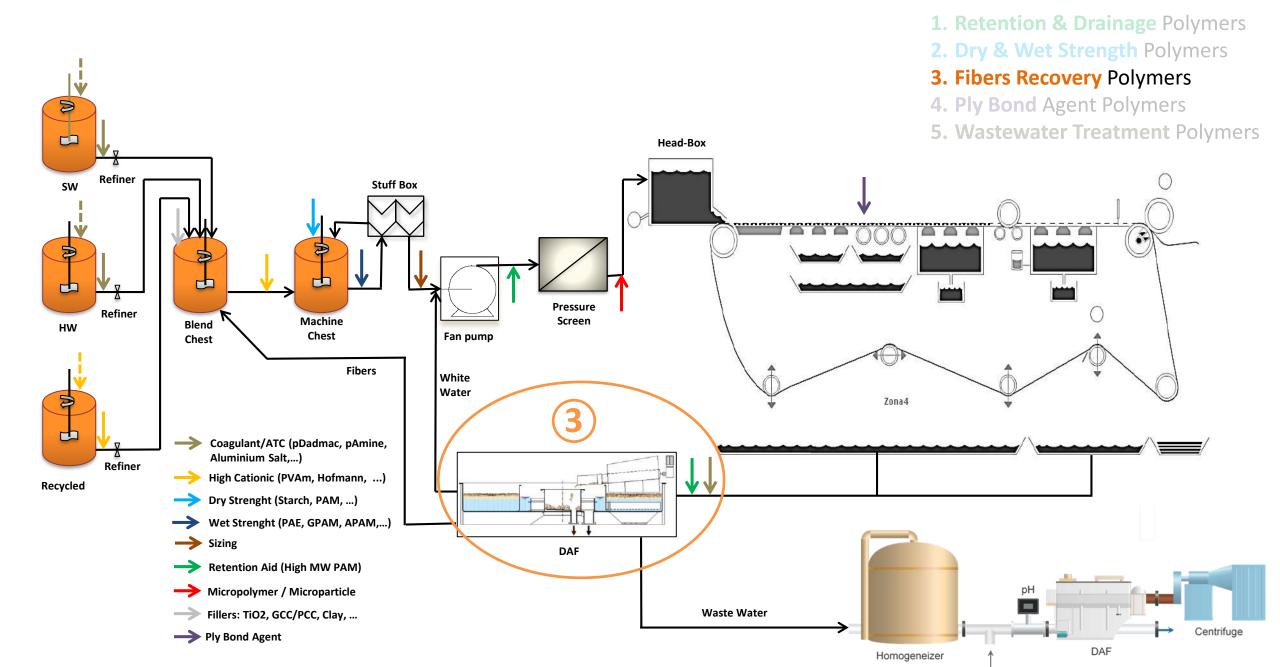
- ✓ On site GPAM has generated renewed interest in an older technology due to increased strength and drainage performance, extended shelf life, and reduced freight costs
- ✓ Cross-linked reaction of our K244 with glyoxal
- √ No High-Tech Equipment needed
- ✓ Low manufacturing process cost
- ✓ Different formulations available with different stability and performance
- ✓ Formulation and Procedure are available in Excel format under request.
- ✓ Laboratory and Industrial Training available.

2 Wet Strength Polymer


Product	Description	lonicity	рН	Viscosity	Actives
FK1620	PAM (Solution)	Anionic	3.5 – 5.0	3000-7500 ср	20%


■ Recommended Dosage: 1 – 3 Kg/Tn as is

Benefits:


- ✓ FK1620 reverses the fiber charge to anionic, providing extra sites for retention of cationic WSR → Improves PAE (Polyamino Polyamide Epichlorohydrin)

 Fixation
- ✓ Increases Dry and Wet Tensile
- ✓ Reduces PAE dosage up to 30%
- ✓ Helps to Control Zeta Potential
- ✓ **Reduces Defoamer** dosage up to 40%
- ✓ Enhances Creping control increasing Yankee speed
- ✓ Improves Machine runnability and Production rate
- ✓ Easy-to-use → Pump & Go
- ✓ Economical Savings

Pulp&Paper Technologies

Himoloc

DR2200

DR2500

DR525

TG992SIM

GO2000

GO2010

GO2030

GO7130

ZW111

ZW322

Pulp&Paper Technologies

Blend Chest Recovered Fibers

Ionic

Charge

Cationic

Cationic

Cationic

Cationic

No Ionic

Anionic

Anionic

Anionic

Amphoteric

Amphoteric

Ionicity

(%)

4%

10%

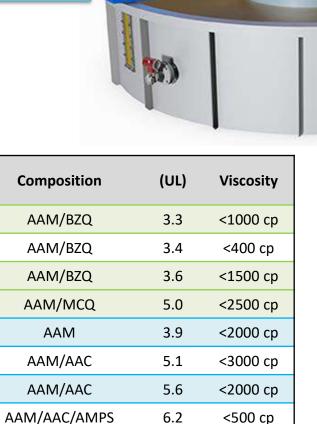
10%

20%

0%

10%

30%

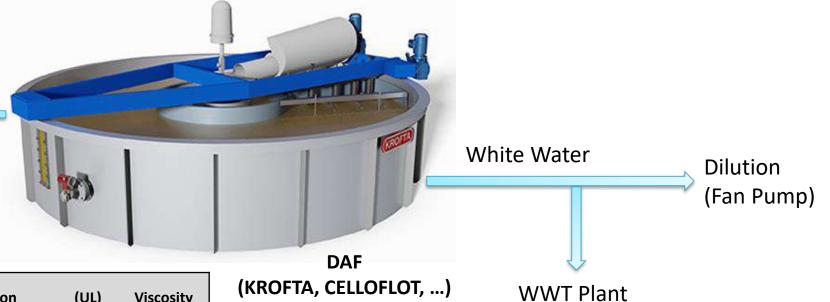

30%

30%/15%

50%/20%

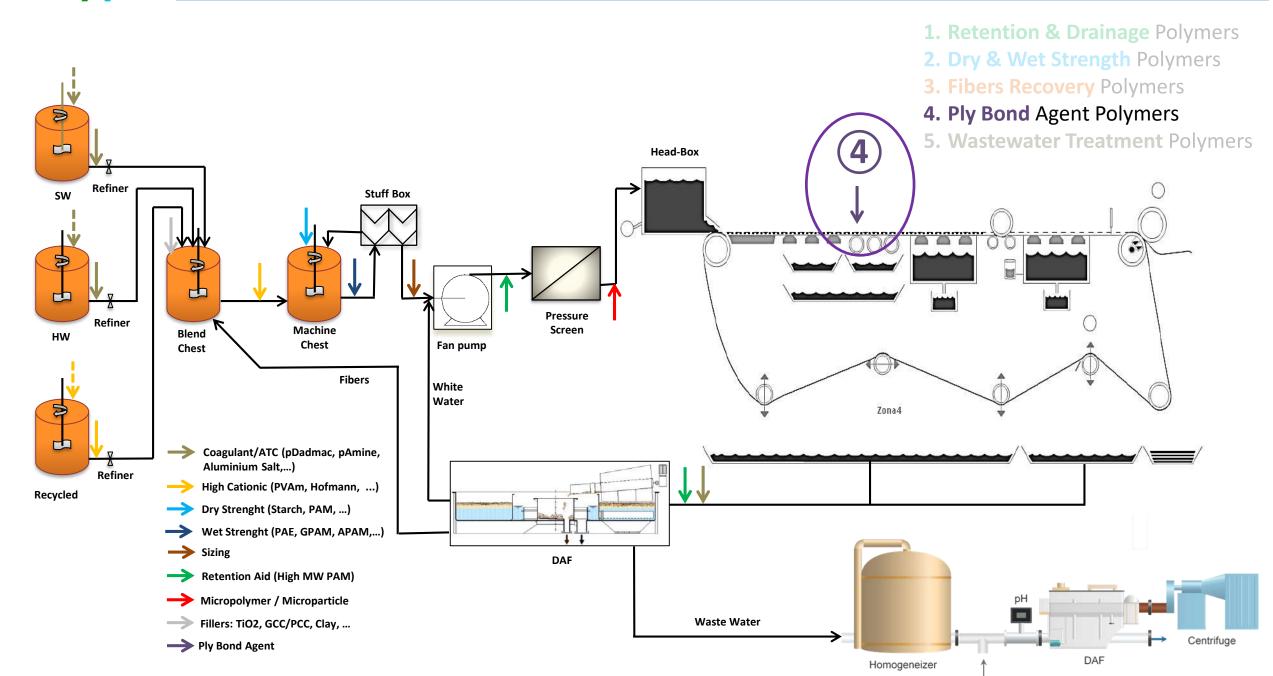
AAM/BZQ/AAC/MCQ

AAM/BZQ/AAC/MCQ



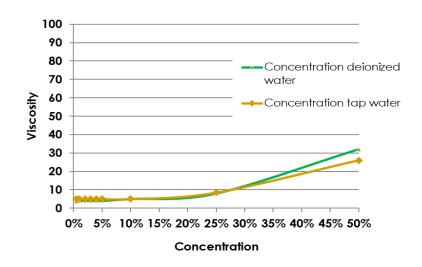
2.9

3.0


<1500 cp

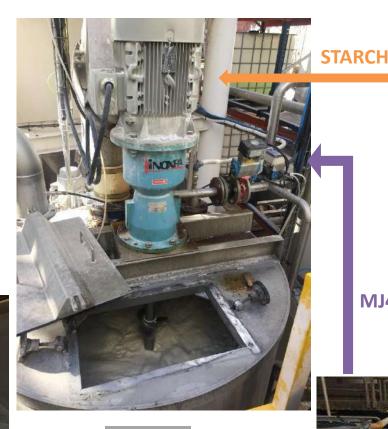
<1500 cp

- ➤ DR525: Cationic Best-Selling Mycropolymer
- ➤ GO2030: Anionic Best-Selling Mycropolymer
- > DR's: Specially used in circuits with high conductivity
- ZW's: Amphoteric PAM
- Exclusive SIM Technology


Pulp&Paper Technologies

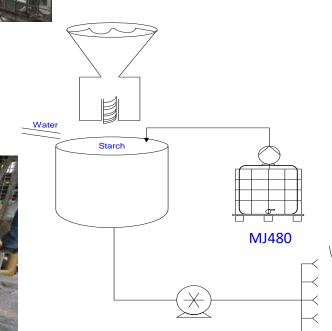
Pulp&Paper Technologies

Himoloc	Description	lonicity	MW	рН	Viscosity
MJ480	PAM (Dispersion)	Anionic	Very High	2.0 – 4.0	<1500 cp

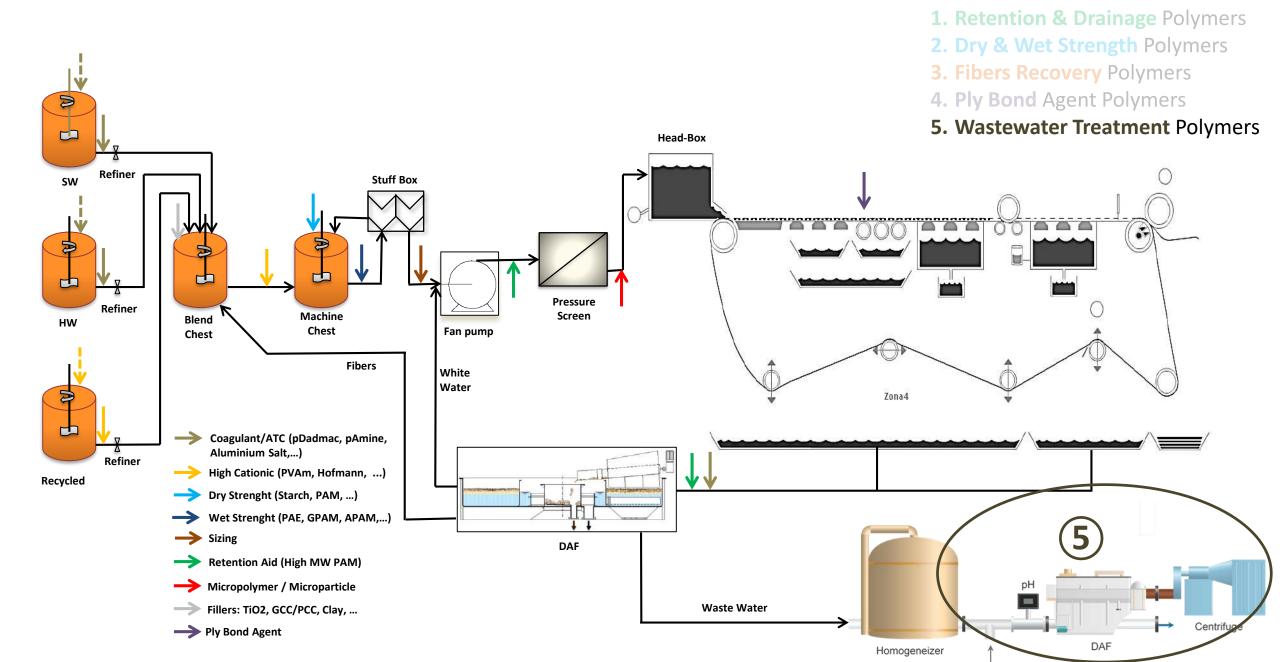


Benefits:

- ✓ **Replaces** partially **native starch** as ply bond (it can replace up to 50% with 1:10 replacement ratio)
- ✓ Improves Mechanical Properties (Scott Bond, Burst, CMT,...)
- ✓ Reducing starch consumption decreases COD in Waste Water and keeps cleaner circuits
- ✓ Decrease Steam Consumption and Improves Runnability: Lower Tg
- ✓ Green Chemical Polymer (HIMOLOC)
- ✓ Better Environmental Image: Decrease Footprint
- ✓ Easy-to-use: Dose directly to starch slurry tank without increasing final viscosity
- ✓ ECONOMICAL SAVINGS


SLURRY

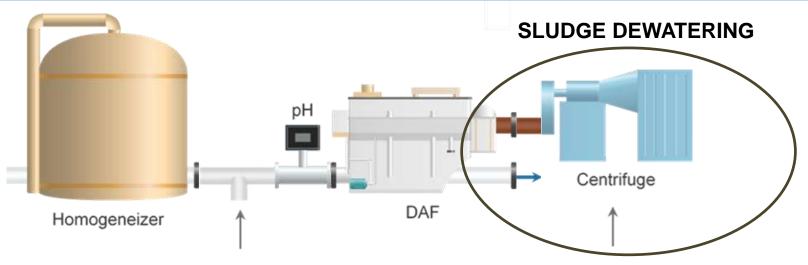
MJ480


MIXER

SLURRY SPRAY DOSING

Pulp&Paper Technologies

Waste Water Treatment


Himoloc	Ionic Charge	lonicity (%)	Composition	(UL)	Viscosity
DR2200	Cationic	4%	AAM/BZQ	3.3	<1000 cp
DR525	Cationic	10%	AAM/BZQ	3.6	<1500 cp
TG992SIM	Cationic	20%	AAM/MCQ	5.0	<2500 cp
TG30	Cationic	35%	AAM/MCQ/BZQ	3.6	<1000 cp
TG823	Cationic	35%	AAM/MCQ/BZQ	3.6	<2500 cp
TG995	Cationic	50%	AAM/MCQ/BZQ	5.0	<2000 cp
TG60	Cationic	64%	AAM/MCQ/BZQ	3.8	<2000 cp

Himoloc	Ionic Charge	lonicity (%)	Composition	(UL)	Viscosity
GO2000	No Ionic	0%	AAM	3.9	<2000 cp
GO2010	Anionic	10%	AAM/AAC	5.1	<3000 cp
GO2030	Anionic	30%	AAM/AAC	5.6	<2000 cp
GO7130	Anionic	30%	AAM/AAC/AMPS	6.2	<500 cp
ZW111	Amphoteric	30%/15%	AAM/BZQ/AAC/MCQ	2.9	<1500 cp
ZW322	Amphoteric	50%/20%	AAM/BZQ/AAC/MCQ	3.0	<1500 cp

- ✓ DR's: Specially used in circuits with high conductivity
- ✓ ZW's: Amphoteric PAM
- ✓ Exclusive SIM Technology

Pulp&Paper Technologies

Linear PAM for Screw Press, Belt Press, ...

Himoloc	Ionic Charge	lonicity (%)	Composition	(UL)	Viscosity
TG992SIM	Cationic	20%	AAM/MCQ	5.0	<2500 cp
TG30	Cationic	35%	AAM/MCQ/BZQ	3.6	<1000 cp
TG823	Cationic	35%	AAM/MCQ/BZQ	3.6	<2500 cp
TG995	Cationic	50%	AAM/MCQ/BZQ	5.0	<2000 cp
TG60	Cationic	64%	AAM/MCQ/BZQ	3.8	<2000 cp
TG998	Cationic	80%	AAM/MCQ/BZQ	5.0	<2000 cp

Crosslinked PAM for Centrifuge, Filter Press, Screw Press, ...

Himoloc	Ionic Charge	lonicity (%)	Composition	MW (UL)	Crosslinke degree	Viscosity
TX950	Cationic	50%	AAM/MCQ/BZQ	2.0	Very high	<2500 cp
TX9550	Cationic	50%	AAM/MCQ/BZQ	3.5	Medium-High	<2500 cp
TX7360	Cationic	64%	AAM/MCQ/BZQ	3.7	Medium	<2500 cp
TX980	Cationic	80%	AAM/MCQ/BZQ	2.5	Very high	<2000 cp
TX9880	Cationic	80%	AAM/MCQ/BZQ	3.8	Medium	<2500 cp

Benefits:

- ✓ Free of Solvents and Surfactants → Final Sludge and Water with lower VOC's
- ✓ Easy make-down equipment → Static Mixer

REGULATORY

- Standard HIMOLOC established <250 ppm residual AAM
- Nordic Swan / Ecolabel We can provide any of our products under these requirements
- AB series We can provide any of our products with residual Acrylamide Below customer's demand
- Acrylamide Free We also have Acrylamide Free polymers

Product	FDA	BfR	GB9685
ADG1	Х	٧	٧
DR2500	Χ	٧	X
DR525	Χ	٧	X
FK1620	٧	٧	٧
GO2000	٧	٧	٧
GO2010	٧	٧	٧
GO2030	٧	٧	٧
GOX301	٧	٧	٧
GOX101	٧	٧	٧
GO7130	Χ	Х	Х
HB3522	Χ	٧	٧
HYD151	٧	٧	٧
HYD252	٧	٧	٧
K244	٧	٧	٧
MJ480	٧	٧	٧
RS15	Χ	٧	Х
RS19	Χ	Х	Х
RS21A	٧	٧	٧
TG22	Х	٧	X
TG325	٧	٧	٧
TG971	Х	٧	X
TG992SIM	Х	٧	٧
ZW261	Χ	Х	Х

5 key ideas to remember: 1. Unique Technology 2. Green Technology 3. Increases productivity and paper quality Improves Retention & Drainage & **Mechanical Properties** 5. Deliver Exclusive & Innovative Programs **HIMOLOC & HYDROSOL** When chemistry takes care of the environment and your business derypol

THANK YOU

Our business grows ...
...together with you"

derypol